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SIGNAL-TO-NOISE RATIO REQUIREMENTS FOR HALF-WAVE AND
FULL-WAVE NONLINEAR DETECTORS WITH ARBITRARY POWER LAWS,

SAMPLING RATES, INPUT SPECTRA, AND FILTER CHARACTERISTICS

INTRODUCTION

The purpose of this report is to determine the signal-to-noise ratio
requirements for various half-wave and full-wave rectifiers, arbitrary input
spectra, and post-detector filter characteristics. Both continuous and

sampled systems are considered, as well as broadband and narrowband spectra.

The system of interest is indicated in figure 1. The input x(t) is a
real stationary zero-mean Gaussian process with variance 02 and normalized
correlation p(T). The following analysis will utilize these general
parameters where possible; however, since the system of figure 1 is to be used
for detection or a decision between two hypotheses, we will later specialize

to the cases

2
o under H]

2
% under HO
p1tt) under H]

p(T) 5 (1
po(t) under HO

]

where the subscript denotes the hypothesis number, 1 or 0. That is, H]

denotes the signal plus noise hypothesis, while HO denotes the noise-only

hypothesis.
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x(t) |[Nonlinearity| y(t) Filter z(t)

—_—] e

g{x} h(T),H(f)

Figure 1. Detection System

Weighted
x(t)|Sampler Nonlinearity z(t)
— ~ Summer ——
a g{x}
{win)}

Figure 2. Discrete Detection System

2|9

-4—W———;-

+

Figure 3. Flat Bandpass Input Spectrum
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The nonlinearity g{x} is characterized by output
y(t) = gfx(t)} ; (2)

this is a memoryless transformation of the input at the same time instant. We

shall be particularly interested in the class of half-wave rectifiers

v
x for x>0

gix} = (3)

0 forx <0

and the class of symmetric full-wave rectifiers
g} = IxI°  for all x . (4)

The particular rectifier with v = 0 is not useful for detection purposes here,
in either the full-wave or half-wave case. For the full-wave rectifier, v = 0
corresponds to a constant output, y(t) = 1, regardless of what the input x(t)
is. For the half-wave rectifier, v = 0 corresponds to y(t) = 1 whenever

x(t) > 0; but if we are trying to decide between two zero-mean processes of
different levels, this information is lost at the half-wave rectifier output.
Hence, we assume v > 0 from this point on, when we deal with v-th law

rectifiers.

The Tow-pass filter is characterized either by its impulse response h(T)

or by its voltage transfer function*

*Integrals and sums without 1imits are over the entire range (-, +w) of

nonzero integrands and summands, respectively.
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H(f) = ~{dl‘ exp(-i2«fT) h(T) . (5)

Particular examples are the nonimpulsive filters,

lfor0<T<T

T
h(T) = , box car filter, (6)
0 otherwise
and
1 -
RC exp( RC for T> 0
h(T) = , RC filter . (7)

0 for T< 0

Another class of great interest is the impulisive filters with a response

composed of a number of equispaced impulses:

h(T) = E w(n) &(T-na) . (8)
n
Sample increment 4 is arbitrary; the sum is over all nonzero weights {w(nﬂ .
Since the filter output in figure 1 in steady state is given, in this latter

case, by

2(t) = f 4T h(T) y(t-T) = f 4T D win) s-ns) g{x(t-T) =
n

- 2 w(n) g{x(t-na)} , (9)

n

an equivalent alternative form is that given in figure 2. Namely, the input
x(t) is sampled at increments & apart in time and subjected to nonlinearity
g{x}. These quantities are then weighted and accumulated, to give output z(t)

at a time t equal to a multiple of A. As a special case, if
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1 for T <n <M
w(n) = , box car filter, (10)
0 otherwise.

then all M samples of the input are equiweighted.

The input spectrum that will be most closely considered is taken to be
flat in a band W about center frequency ifc; see fiqure 3. The Q of this

spectrum is
Q=Ff/W>1 (1)
c -2
and the highest frequency contained is

=w(o+’§>. (12)

The constraint on Q in (131) guarantees that W is always the bandwidth of the

-+
1]
-
+
~n

positive frequency components of the input spectrum.

The normalized correlation corresponding to figure 3 is

p(T) = cos(2«fct) sinc{WT) , (13)

where we define

sinc(x) = ShiDIG . (14)
X
For the special case of a low-pass spectrum, fc = W/2, (13) reduces to
p(T) = sinc(2wD)  for Q = % ; (15)

the input spectrum is flat over (-W,W) in this particular case.
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Let m, and ci denote the mean and variance, respectively, of the
output of the detection systems in figures 1 and 2. Our main interest here is
in the evaluation of the output signal-to-noise ratio y defined in accordance

with the power deflection criterion:

o = . (16)

The subscripts 1 and O denote the corresponding hypotheses, as already
introduced in (1). We will determine the dependence of y on all the
parameters encountered above, such as 9 9o pO(IU, v, T, A, M, W, Q,

and compare the performance of different nonlinear systems for various
sampling rates and spectra. These results will greatly extend those given in
(1], for example, and will be much more accurate, since we will use 1000 terms
in our series expansions, instead of the 3 or 4 termé used there. Observe
that the absolute Tlevels (gains) of the nonlinearity and filter cancel out in
quantity y; thus, we can assume any convenient level for them, as done in (3),
(4), (6), (10), for example. Limitations of the output deflection criterion

(16) will be discussed later.
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DERIVATION QF QUTPUT MOMENTS
Qutput Mean
In order to determine the detection system output signal-to-noise ratio

defined in (16), we need m, and o, For any filter h(T), whether

impulsive or not, since the output in steady state is

z(t) = f dt h(T) y(t-T , (17)

then the mean of the output is

3
1

X zZ(t) = f dT h(T) y(t-7) = myf dT h(T) , (18)

in terms of the mean of nonlinearity output y(t). (An overbar denotes an

ensemble average.) However, this latter quantity is given by

m, = V(D) = alx(t} - fdx afx} M0y (19)

in terms of the first-order probability density function p(1) of input x(t).

. . . . . . 2
Since the input is zero mean Gaussian, with variance o , then

pMixy = 1 g(é) , (20)

where we define

B(w) = (21:)‘”2 exp(—w2/2) 1 , (21)
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Substitution of (20) in (19) yields for the mean of y(t),

m, = Jﬂdx gix % ﬁ(i) = J‘dw g{ou@ g(w) . (22)

Coupled with (18), system output mean m, is now available as

m, = fdw g{ow} 8(w) j-dt h(T)

Qutput Variance

The ac (zero-mean) output of the detection system is

() = 2(t) - (D) = fdr hT) F(t-D) . (23)
where the ac filter input is
V(t) = y(t) - y(t) = y(t) - m, . (24)

Then the variance of the detection system output is

cg = iz(t) = jjhdu dv h(u) h(v) y(t-u) Y(t-v) =

- ffdu dv h(u) h(v) Ry(u=v) = fd‘t a() Ry(O) (25)

where

R (T) = y(t) y(t-T)

is the (auto) correlation of random process ¥(t), and
a(t) = J.du h(u) h(u-T) (26)

is the autocorrelation of the deterministic filter impulse response.
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An alternative form to (25) is available via the frequency domain

expression

ci = S‘df ]H(f)]2 P() (27)

where lH(f)[2 is the filter power transfer function, and Py(f) is the

power density spectrum of V(t).
Now from (24), we see that correlation
2

RVCC) = Ry(T) - my 5 (28)

Also, from (2), we have correlation

RY(D) = y(1) y(t-T) = g{x(t)} gix(t-1) =

ﬂ-dxa dxy 9fx} 9 xS p.(2)("a’ Xps T) (29)

in terms of the second-order probability density function of input process

x(t).

At this point, we use Mehler's expansion for a Gaussian process [2, (67)]:

o0
X X
2 Dix . T =0 M) 2Nk > L ek%> Hek(—z>, (30)
k=0

(1)

where p has already been encountered in (20)-(21), and Hek(x) is the

Hermite polynomial [3, (22.2.15)]. Substitution of (30) in (29) yields
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|_1

ACEICE (31)

>~

o0
R = >
k=0

where nonlinearity coefficients are defined as

G(k) Jadx gx} p(])(x) He, (x/a) =

fdw g{ow} B(w) He (W)  for k >0 . (32)
Here we used (20) and (21).

In particular, we have from (32) and (19), the zero-th order coefficient

]
6(0) = jdx g{x} oM x) = m, - (33)
Thus the k = 0 term in sum (31) is simply mi. Combining this information

with (28) and (31), we obtain correlation

o0
(D = > e e (34)
k=1
It is worthwhile observing that coefficients {G(kﬂ in (32) depend solely
on the input standard deviation o and the nonlinearity g{X}; they are
independent of the input spectral shape or the filter characteristics. Of

course, from (1), since

o, under hypothesis H

] 1
g = A (35)
9 under hypothesis H0

10
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then

G](k) under‘H]

G(k) = . (36)
Go(k) under H0

However, we will keep o general for now, at least until we have to specialize
to H1 versus HO’ or to evaluate output signal-to-noise ratio y in (16). A
similar procedure has been adopted with respect to general p(T) in (30), (31),

and (34), above.

We now utilize (34) in (25) to obtain the detection system output variance

od
= fdta(t) S Lo o -
k=1

o0
] 2
= Z i 6 (k) A(k) , (37)
k=1
where we define coefficient
A(k) = J6 dT a(T) pk(T) for k > 1 . (38)

This sequence {A(kﬁ depends solely on filter h(T) and input normalized
correlation p(T); it is independent of o and gix}. Thus sequences fG(kﬁ and
ZA(kﬁ in (32) and (38), respectively, completely separate the dependence of
the system output variance on the relevant parameters of the problem.

However, just as in (1) and (36), since

11
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p](t7 under H1

p(T) , (39)
poct) under‘H0

then

A1(k) under H1

A(k)

(40)
Ao(k) under H0

The results above for output mean m, in (18) and output variance
ci in (37) are exact. There are no assumptions regarding small input
signal-to-noise ratio, large avéraging time, or large time-bandwidth product.
They hold for arbitrary input strength o, input normalized correlation o(T),
filter impulse response h(T), and nonlinearity gZx}. Also o and p(T) can vary
with the hypothesis, as in (1). The input spectfum can be low-pass,
broadband, or narrowband. The filter can be impulsive as in (8), or otherwise
as in (6) and (7); the sampling interval A and weights {w(nﬁ in (8), and the
duration T or time constant RC in (6) or (7), are arbitrary. The nonlinearity
g{x} can be a v-th law power device as described in (3) or (4), but need not
be; also, v is not limited to being an integer. The effects of deliberately
undersampling the input process in figure 2 can be investigated by choosing
sampling increment A larger than the inverse of twice the highest frequency,
(12), in figure 3; conversely, the effects of a continuous filter impulse
response can be deduced by choosing A very small. A1l of these effects will

be investigated here.

The major assumption utilized is that the input signal and noise must be

Gaussian; this precludes the presence of pure tones in the input signal.

12
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Qutput Signal-to-Noise Ratio

The system output signal-to-noise ratio was defined in (16). We now

employ (18), (33), and (37) to obtain it in the form

2 [e( —e(of_(2
1 0
e [dr h(r;} 2 T (41)
>
k=1

The utility of this result depends on the ability to accurately and
efficiently evaluate the single integrals for G(k) and A(k) in (32) and (38),

respectively, for high-order k.

A note of caution is worthwhile here: since output gigna1—to—noise
ratio, vy, in (16) and (41) only uses second-order moment information, it will
have limited capability insofar as determining the system operating
characteristics, that is, detection probability versus false alarm
probability, unless output z(t) is fairly well approximated by a Gaussian
random variable. This latter situation will obtain when the product of
averaging time and input bandwidth is large relative to 1; furthermore, that
means that low input signal-to-noise ratios can be tolerated and yet decent
performance predictions can be realized. Hence, although we concentrate here
on the statistic y, we are aware of its limitations as a performance measure.
To accurately determine the exact operating characteristics, the techniques of

[4] could be advantageously employed.

13/14
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BASIS OF COMPARISON

In order to compare the various nonlinear systems subject to different
input spectra and averaging filters, a standard performance level for output
signal-to-noise ratio vy will be adopted. Al11 comparisons will then be made

with this standard, which will now be derived.

The standard system of interest is depicted in figure 4; it is a special

case of figure 1 with g{i} = x2 for all x, that is, the full-wave square-law

rectifier. Since the output for figure 4 fis

2(t) = [ ar ) Ce-n (42)
then mean
m, = 2(t) = H(0) o , (43)

where we utilized (5). The total output power (ac and dc) is

(1) = fdf LG S(F) (44)
X

in terms of the spectrum of process x2(t). But since the correlation of

x2(t) is, for Gaussian process x(t),

R (D) = x°(t) x°(t-T) = o + 20" p5(1) , (45)
X
then the spectrum of x2(t) is

P ,(F) =o' s(f) + 20" p{P(r) (46)
X
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x(t) : x(t) | Filter | z(t)
—_— arer >
e h(T) H(E)

Figure 4. Full-Wave Square-Law Detection System

v

72)

- 2;2 -w WX 0 W W 2 £

Figure S.VSpectral Quantities for Variance Uﬁ,(49)
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Here, and in the following, we will use the notation

PR gy = fd-c exp(-i2vfT) o (T) . (47)
Thus, P(k)(f) is the k-fold convolution of

PN () = fdr exp(-i24fT) p(T) . (48)

For the flat bandpass spectrum of major interest, P(1)(f) is just the
spectrum of figure 3, without the factor 02. More generally, P(l)(f) is
the spectrum of input x(t), normalized to unit area. P(z)(f) is depicted in

figure 5. Combining (43), (44), and (46), we find output variance

2

o2 = 25" gdf el 2 e ey (49)

The output signal-to-noise ratio of our standard system follows upon

using (43) and (49) in (16):

2
o (4 -4

YS = 4 2 .(2) ’ (50)
20 fdf [wee] 2 P82 )
where we have added subscripts to differentiate hypotheses H] and HO. If

we wanted to maximize Y by choice of the filter, (50) indicates that the
relative power transfer function lH(f)/H(O)l2 of the low-pass filter should
be made as sharp (narrow) as possible about f = 0, where the power ratio must

necessarily be 1. But since, in practice, the effective duration T of filter

impulse response h(T) is limited, there is an upper limit to Y-
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Rather than attempt to derive this absolute optimum value of Ygo We
develop an approximation to Y ih the case where the filter width, 1/T, is
much narrower than the input spectral width, W; that is, TW >> 1, which
corresponds to a long averaging time assumption. 1In this case, (50) yields

the approximation

=<
N

H2(0) (012/0(2) - )2
d

LS f £ o2

Udl‘ heo)) 2 (475 - 1)2

2 .fdf Pé1) (f) S&t h™(T)

T (1/0 - _

= = v, (51)
(1)
2 5df P0 (f)
where
Udt n(tﬂz
I= . (52)
{ar n?(o)
is defined as the effective duration of filter impulse response h(T). The
last quantity in (51) is the desired approximation, A to be utilized as a
basis of comparison. In deriving this result, we have utilized (47) in the
form
(2 2 (1)
p{?)(0) = fdr po(T) = jdf p§") () (53)

and Parseval's theorem for the Fourier transform pair in (48).
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For the flat bandpass spectrum of figure 3, where W measures the width of

the positive frequency components of the input spectrum, that is,

D o lrerd S, (o¥o0od). a0

the approximation in (51) becomes

-1 for flat bandpass spectrum with Q > (55)

<V

Q |Q

oN|—=r
N f—

If the input spectrum is modified from figure 3, this result must be

re-evaluated from (51). In fact, the interpretation of bandwidth W must be

done carefully and with precision.

In the further special case where hypothesis H0 corresponds to noise

only, and H] to signal plus noise, then
2
oy = S +N under H]
L ) (56)
2 _
o = N under H0

where N and S are the input noise and signal powers, respectively, and (55)

reduces to

2
Y, = TW(%) for flat bandpass spectrum . (57)

This, finally, is the basis of comparison, for the standard system
signal-to-noise ratio, to be used for all the quantitative results for the

flat bandpass spectrum, and for the two hypotheses described in (56). There
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is a certain amount of arbitrariness in adopting (57) as a basis; however, if
two systems are both compared with (57), then the difference of those two

relative signal-to-noise ratios is exact, regardless of the basis.

It is very important to observe that the approximation for the standard
system output signal-to-noise ratio Y, in (51) is not the optimum or maximum
value of the more general result A in (50) for the square-law system
depicted in figure 4. Rather, Vs will be greater than L in some cases.

To see this, the terms in the system output variance (denominator of (50)),
are illustrated in figqure 5. It is obvious, since everything is nonnegative,

that

jdf el 2 {2 ey < 8P (0) jdf R (58)

Since this right-hand side is just the quantity in the denominator of the top
line of approximation (51), this means that Y > Y,

More generally, this means that we have to expect the possibility that
the general system output signal-to-noise ratio in (16) will have y > A1 in
some cases. Nevertheless, because of its simp]icity,yb in (57) will be kept
as our basis of comparison for the various systems. However, the interpreta-

tion of T and W must be carefully noted for each case.
The exact way in which we use the basis Y in (57) is as follows: for

the general nonlinear system in figure 1, we set its output signal-to-noise

ratio y equal to the basis, that is, set
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' 2
=) - ),

where S/N is the actual input signal-to-noise ratio to the general nonlinear
system, and (S/N)S is the input signal-to-noise ratio to the standard
system. Then we solve (59) for the required input signal-to-noise ratio S/N
to achieve this level of performance, and compute the decibel difference at

the input,

dB = 10 log [(ST;:_):J (60)
S

relative to the standard system input signal-to-noise ratio.

In general, this quantity will be a function of the standard system input
signal-to-noise ratio (S/N)S; however, for low input signal-to-noise ratio,
it is independent of (S/N)S. It affords a measure of how much more input
signal-to-noise ratio is required for the general nonlinear system of
interest, relative to the square-law standard of figure 4. In keeping with
the discussion above, we can expect that the quantity, dB, in (60) will become
negative in some cases; this simply means that the performance of that

particular nonlinear system is somewhat better than the arbitrary basis Yh

adopted in (57).
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OUTPUT SIGNAL-TO-NOISE RATIO FOR TWO FILTER CLASSES

The system output signal-to-noise ratio v was derived in (41) in terms of
the general filter impulse response h(T). In this section, we shall develop ¥y
in more detail for impulsive filters, as in (8), and nonimpulsive filters, as

in (6) and (7). The latter case correponds to an analog filtering procedure.

Impulsive Filters

The impulse response h(T) takes the form (8) in this case, and the
corresponding system block diagram is given in figure 2. We substitute

(8) in (26) to obtain the autocorrelation of h(T) as

a(r) = Z b(n) &(T-na) , (61)
n

where sequence {b(nﬁ is the autocorrelation of the filter weights:

b(n) = :EE_ w(m) w(m-n) for all n . (62)

m

The evaluation of A(k) in (38) is immediate in this case, yielding

A(k) = zg.b(n) pk(nA) for k > 1 . (63)
n

There follows from (18), (33), and (8), the system output mean in the form

m_ = G(0) Zw(n) , (64)
n
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while from (37) and (63), the variance is given by

od
o = 2 = (k) E b(n) pX(na) . (65)
= n

k=1

Combining these last two expressions in (16), the output signal-to-noise

ratio for the impulsive class of filters can be expressed as

M [6,(0) - 6,(0)]°

o0
> 7 G > B(n) pg(na)
n

k=1

' (66)

where

5]

M= (67)

;wz(n)

is the effective number of samples in impulsive filter response h(T) in (8),

and

w(m) w(m-n)
_b(n) _ _m

T b(0) :Ei wz(m)

m

B(n) (68)

is the normalized autocorrelation of the filter sampling weights {w(nﬁ . The
result (66) holds for any impulsive filter with any weight sequence fw(nﬁ ,
sampling increment &, input levels 9 9 input correlation poct), and

nonlinearity g{x}.
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Nonimpulsive Filters

Examples of filter impulse responses in this class were presented in

(6) and (7). In the former case, the autocorrelation (26) is

1 Tl
T <} - 7 ) for |tl<T

a(t) = , box car filter, (69)
0 otherwise

while in the latter case,

a(T) = 57¢ exp(— %) for all T, RC filter . (70)

If we substitute (38) in (41), the output signal-to-noise ratio for the

nonimpulsive class of filters can be expressed as

2

- [G}(O)z_ (9 — (1)

S i &M [arem ey

k=1

where
2
dT h

g

2 (72)
fd‘t.' h=(T)

is the effective duration of filter impulse response h(T), and

), {du nu) hu-) -
20 fau 2w

is the normalized autocorrelation of the filter response. The result

a(T) =

(71) holds for any input levels 9s 9 input correlation pott), and

nonlinearity g{x}. However, it does not cover a filter containing any
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impulses, since the denominator integral in (72) and (73) is infinite then.
Nevertheless, the corresponding result in (66) for the impulsive filters can
be derived as a 1imit of a set of progressively narrower pulses at multiples
of increment A. Thus, (71) does have the capability of covering the most

general filter structure, if manipulated properly.

Long Averaging Time Assumption

The results in (66) and (71) for the output signal-to-noise ratio
simplify somewhat when the averaging time of the filter (Ma or T) is much
larger than the correlation time (1/W) of the input process x(t) under
hypothesis HO' In the impulsive filter case, this means that the sum on n

in the denominator of (66) can be approximated according to

> 8(n) ph(na) = 6(0) > efma)z > phma)  forkx1, (74)
n n n
leading to approximation

M [G](O) - GO(O)]2

S FEm S M
n

k=1

K"—-‘

It is interesting to observe that the exact detailed values of the weights
{w(nﬁ in impulsive filter response (8) are immaterial to the value of (75),
except insofar as they affect effective number M via (67). This simplifi-
cation is not possible for the general averaging time result in (66), which

depends on the weights through their normalized autocorrelation sequence

{B(n)) in (68).
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On the other hand, for nonimpulsive filters, the long averaging time
assumption means that the integral on T in the denominator of (71) can be

approximated according to

[aratm) o = a0 [ ar b = [avobm torkzn, (76)

leading to approximation

T [6,(0) - 65(0)/°

Yy = : (77)
S s [ e
k=1

Analogous to the observation above, the shape of the detailed impulse response
h(T) is immaterial to the value of (77), except as it affects the effective

duration T via (72).

The approximations in (75) and (77) for the long averaging time
assumption are not used in the numerical results that follow later. Rather,
the exact result (66) for impulsive filters,and (71) for nonimpulsive filters,
are extensively utilized. Also the danger of using the long averaging time
assumption when inappropriate is illustrated by a numerical example in a later

section.

Narrowband Input Spectrum

We now return to general output signal-to-noise ratio Ty for arbitrary

averaging time in (71) and consider, for the moment, the case of a very

narrowband input spectrum under HO' That is, let normalized correlation
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po('r) = r(T) cos(21rfc‘t‘+ s(T)) , (78)
where center frequency fc is much larger than the highest frequency contents

of envelope r(T) and phase #(T); this is called a high-Q input spectrum. Then

the integral in the denominator of (71) becomes

jdr a(T) pg(T) = jdr a(T) r(z) cos(anf T+ (1)) =

0 for k odd

lE ( £ ) b[dt'a(t) rk(t) for k even
2" \k/2

Here, the k-th power of the cosine varies so quickly with T that we replaced

z cos @ fdr o(T) Ty = (79)

it by its average value and removed it from under the integral on T.

Substitution of (79) in (71) yields the system output signal-to-noise ratio

T (&,00) - (50(0)]2

WS = 1 2 .1 /K 5 K (80)
17 Gr(k) & dT «(T) r (T)
Z k' 20 Sk (k/?) @

for a narrowband input spectrum.

This form for YNB leads to an interesting conclusion regarding
symmetric full-wave rectifiers versus half-wave rectifiers. Namely, reference
to the defining relation (32) for nonlinearity coefficient G{k) reveals that,
for k even, a symmetric full-wave rectifier has a value of G(k) exactly double

that for the corresponding half-wave rectifier. However, since (80) only
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involves the even k values, whether a full-wave rectifier or half-wave
rectifier, this factor of 2 cancéls, and output signal-to-noise ratio YNB in
(80) is exactly the same for a symmetric full-wave rectifier as for a
half-wave rectifier. This conclusion holds for any rectifier g{x}, not just
the »-th law rectifiers in (3) and (4). It also holds for any filter h(T) and
normaiized correlation envelope and phase r(T) and ¢(T) in (78), and is not
limited to large averaging times or small input signal-to-noise ratio. The

only restriction is the required high Q of the input spectrum.

This conclusion regarding identical TNB values for symmetric full-wave
rectifiers and half-wave rectifiers is also physically reasonable for a high-Q
input, in that no significantly different information is contained by the
negative lobes of the waveform x(t) when its envelope and phase are slowly

varying relative to the center frequency.
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v-TH LAW RECTIFIERS

Up to this point, all the relations involving nonlinearity coefficient
G(k), defined in (32), have been general. We now specialize to the symmetric

full-wave and half-wave v-th law rectifiers mentioned in (3) and (4).

Full-Wave Rectifiers

The nonlinearity of interest here is

gfx} = |x|7 for all x (v >0) , (81)
“which is a symmetric full-wave rectifier. Substitution of (81) in (32) yields
G(k) = o” 5 dw |wl ¥ 8(w) He (W) for k 20, (82)

where g(w) is defined in (21), and Hek(w) is a Hermite polynomial
[3, (22.2.15)]. Since Hek(w) is odd in w for k odd, it immediately follows
that

G(k) =0 for k odd . (83)

On the other hand,

o0

G(k) = 2o° ~§ dw w' g(w) He (W)  for k even (0, 2, 4, ...) . (84)
0
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In order to evaluate this integral, we first define the quantity
<0
L(k) = ~f dw w’ (W) Hek(w) for all k > 0 . (85)
o,
It should be noted that L(k) is a function of v, in addition to the explicitly
indicated dependence on k; however, it is independent of o. A recurrence for
L(k) is derived in appendix A:
L(k) = (v+2-k) L(k-2) for all k > 2 , (86)
with starting values

r_ _1 = -~
Loy = 22« F(’%‘) L1y = 2 2 «7“[1<§+1>. (87)

Thus very high order values of L(k) can be quickly evaluated with the aid of

just two gamma function computations.

The nonlinearity coefficient in (84) is therefore expressible as

G(k) = 2¢° L(k) fork =0, 2, 4, ..., (88)
or
G(k) = (v+2-k) G(k-2) for k=2, 4, 6, ..., (89)
with starting value
v _ 1
6(0) = o® 2° 4 P<°’§]> . (90)
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We now utilize the results in (88) and (83) to express the impulsive filter

system output signal-to-noise ratio in (66) as

M (cfl,/cs - 1}2
i utk) > B(n) pg(na)
k=2 n

even

YIF (91)

where subscripts IF denote the impulsive filter full-wave rectifier case and

where we have also defined sequence

2

U(k) = %T LELKL for all k > 0 . (92)
T LT(0)

This latter sequence has a simple recurrence, as seen by reference to (86),

namely

2
U(k) = U(k-2) 1%%%{%%— for all k > 2 , (93)

with starting values, from (87),
ug) =1, U() =2—7

(94)

In fact, since (91) only involves even k, Yip can actually be evaluated

without the aid of any gamma functions.

An exactly analogous procedure applied to nonimpulsive result (71) leads

to output signal-to-noise ratio
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v, v 2
T <;1/ao - f)
o0

Te = , (95)
TS uw [ arem ey
k=2
even
where subscripts NF denote a nonimpulsive filter and a symmetric full-wave
rectifier.
Full-Wave Square-Law Rectifier
Here we specialize the above results to the case of » = 2, that is,
g{k} = x2 for all x. There follows, upon use of (93) and (94), the
significantly simpler results
M (cf/ag - '|> 2
YIF(U =2) = - (96)
2 > B(n) py(na)
n
from (91), and
) ?
Yyplv = 2) = (97)

2 f 4T o(T) pA(T)

from (95). This fortuitous situation occurs because the recurrence (93)
generates zero coefficients for k > 4, when v = 2. More generally, v even

would also terminate the recurrence at k = v + 2.
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Full-Wave Linear Rectifier

This special case corresponds to v = 1, that is, g{x} = |x| for all x.

Then

M (c.l/oo = 1) 6

(v =) = = ” (98)
tF S Uk > () pgina)
k=2 n
even
from (91), where {U(kﬂ is given by (93) with v = 1. Also, from (95),
T (oy/54 - 1) ¢
S uk) [ ot am el
k=2
even
Half-Wave Rectifiers
We now return to general values of power law v, but to half-wave
rectifiers characterized by
x’ for x > 0
g{x} = . (100)
0 forx <0
Substitution of (100) in (32) yields nonlinearity coefficient
G(k) = o' L(k) for allk >0, (101)
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where L(k) was defined in (85). When (101) is utilized in (66), the result

for the output signal-to-noise ratio is

M (o;’/cg - 1) 2
£ k
S Uk) Z B(n) py(na)
n

k=1

Yiy = (102)

where IH denotes impulsive filters and half-wave rectifiers. This result is
identical to YE in (91), except for the inclusion of all the odd k values

here. Similarly, (71) leads to

) T (o}l’/cg - '|> ;
S ) [ daram eym
k=1

YNH (103)

for nonimpulsive filters and half-wave rectifiers, NH. This is identical to

TNE in (95) except for the inclusion of all the odd k values here, in the

case of half-wave rectification.

Half-Wave Square-Law Rectifier

When we set » = 2 in the results above, and refer to (93), we find that

2,2 2
M <;1/°0 - )

Yiulv = 2) = p=e) F (104)
IH 2 2 B(n) pg(nA) F S UK z B(n) p(';(na)
n k=1 n
odd
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while
(e - )’
Yuy(v = 2) = = (105)
L 2 [ 4t (@ pp(0) + S UK [ @ a(m) ey
k=1
odd

Neither of the series in odd k terminate, since the numerator in recurrence

(93) is (4—k)2, which is always nonzero for k odd.
Half-Wave Linear Rectifier
Upon setting » = 1 in (93) and (94), we obtain

) .
- - = U(k-2) 8K -
U0) =1, U(1) =5, Uk) = U(k=2) {33y fork=2,4,6, ..., (106)

with all other U(k) zero. Then (102) and (103) yieid

M (o170 - 1)
[=¢]
3 D B pglna) + S U(K) > B(n) pg(na)
n k=2 n
even

Yg(v = 1) (107)

and

T (o7 - ‘Y
%fd’t‘c(‘t) po(T) + 5‘ U(k) 5' dT (T) Pé(f)

k=2
even

, (108)

respectively.
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The programs to be furnished later are not limited to the special cases

in (96)-(99) and (104)-(108), but, in fact, cover arbitrary values of wv.

Equality of Performance for v = 1

It is interesting to observe that these last two results for the linear
half-wave rectifier are identical to the corresponding earlier results for the
symmetric Tinear full-wave rectifier in (98) and (99), except for the

additional ‘term for k = 1 here. Thus, for nonimpulsive filters,
if jdta(t) po(r) =0 (109)

in (108), then the output signal-to-noise ratios of the linear symmetric
full-wave rectifier and linear half-wave rectifier are the same. But since,
from appendix B,

de e @ P(()])(f)
jdl’ a(T) pp(T) = > ' (110)
5df ()

the only way (109) can be true is if the filter power transfer function
lH(f)\2 and the input spectrum under HO' namely Pé])(f), do not

overlap; see figure 6 for the flat bandpass input spectrum example. Then
approximately, if

4
W *

—
A

_ _ W . 21
2, 7 e RIECH () = <olts (111)

then (109) is substantially satisfied and the linear half-wave rectifier and

the symmetric linear full-wave rectifier have similar output signal-to-noise
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T 6

i A

Figure 6. Spectral Quantities for (110) and (112)

ratios. This lower bound on Q in (111), relative to the inverse time-
bandwidth product, will be encountered again later, when we investigate
general v-th law rectifiers for general bandpass spectra, as delineating a

distinct dichotomy in performance for half-wave rectifiers.

It will be recalled, in an earlier section dealing with narrowband input
spectra, (78)-(80), that the output signal-to-noise ratios of a v-th law
half-wave rectifier and a symmetric full-wave rectifier were identical for all
v, if the Q of the input spectrum was very large. The result here,
particularly (111), is a much milder requirement that achieves the same
result, but only for the linear device, v = 1. The reason that a much more
moderate requirement on Q will suffice for v = 1 is that all the odd terms for

k > 1 are already absent from (107) and (108), whereas they were suppressed in
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(79) only by the use of the very large Q assumption. So, for a linear
rectifier, virtual equality of performance for a half-wave rectifier and a
symmetric full-wave rectifier can be expected for a very moderate value of Q.
Larger values of » would require larger Q values for the same result to
obtain. These observations will be borne out by numerical results to follow

later.

For the impulsive filter result of (107), the analogous result to (110)

is also derived in appendix B, giving

5df o) 2 p§1 ()

8> B(n) pa(na) = , (112)
nz " Aot 'ﬁS\df K
A

where the filter voltage transfer function is now

H(f) = :EE w(n) exp(-i2w«fan) (113)

n

from (5) and (8). The integral in the denominator of (112) is over any
frequency interval of length 1/4, which is the period in f of the filter
voltage transfer function H(f). The numerator integral in (112) is over all
f, but could be limited, if desired, to the fundamental frequency interval
(-1/2a, 1/24) if normalized input spectrum Pé1)(f) is replaced by its

aliased version

B0 =S A0 -0)  roran, (1)

n

where the sum is over all n from - o to + .
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In any event, (112) will be zero if thé filter power transfer function
[H(f)l2 and input spectrum Pé])(f) do not overlap. Fiqure 6 is again
applicable, but now with the addition of major lobes of lH(f)l2 at f = n/a
for all n. Not only must (111) be met in order to avoid overlap near f = 0,
but the other major lobes of lH(f)l2 must not overlap Pé])(f). This
requirement can be met, for example, by keeping the lower skirt, of the lobe

of lH(f)\2 centered at f = 1/A, above the highest frequency of the input

Spectl ums:
l ._l p _.N - } l .
T > fl S f + 2 = W@ 2> ’ (]]5)

that is, sampling frequency f¢ = 1/4 must satisfy

> o+l (116)

This requirement is in addition to that of (111).

Actually, (116) is a sufficient condition for non-overlap in fiqure 6,
but is not always necessary. In particular, for larger Q, the possibility
exists of deliberately undersampling (violating (115)) and yet achieving
nonoverlap of the aliased spectral components of (114) with the filter lobe at
f = 0. This will be demonstrated by example in the results section, not only
for v = 1, but for othe} v values as well. Here we have resorted to the
equality

fdf o] 2 e{ 6y = fdf Jwee) 2 8§V ey (117)
Vs

based upon the use of aliased spectrum (114) and the periodic character of

filter H(f).
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INDEPENDENT SAMPLES

This section will address the discrete detection system of figure 2,
where sampling increment A in (8) is taken such that the samples of Gaussian
process x(t) are statistically independent. This can be accomplished by
taking 4o large, in general. However, at least in the special case of a flat

low-pass spectrum under HO’ as in figure 3 with

(F) = = for If] <w, (118)
then the choice A = (2W)_] in corresponding normalized correlation (15) gives

1 forn=20

polna) = sinc(n) = , (119)
0 otherwise

which also means independent samples. (Another special case is afforded in
the flat bandpass spectrum case, by choosing a4 = w‘1, irrespective of center

frequency fc; see (13) and refer to (119).)

For this section only, dealing exclusively with independent samples, we
will not yet specialize to the case of v-th law rectifiers, but temporarily

allow general nonlinearities. Then general result (66) for the system output

signal-to-noise ratio reduces to

M {6, 0) - GO(oﬂ2

Y = —=3 for independent samples, (120)
I L Gz(k)
E ki -0
k=1
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by use of (119). We observe immediately that the only way the filter weights
{w(n% enter this result is via éeffective number M defined in (67), whether
large or small; normalized autocorrelation sequence {B(nﬂ in (68) is not

relevant in this special case.

Numerical evaluation of the particular infinite series in the denominator

of (120) can be circumvented, as follows; from (34) and (28),
= 1 2 2
Ry(0) = Z o 6k = ol (121)

Then, also using (33), (120) becomes

_ M (my1 - "‘y0>2
2

i for independent samples . (122)

But these latter quantities can be obtained directly from the moments of the

nonlinearity output,

m, = y(t) = g (x(1)]

fdx ot oM (x)

vty = ¢?fx(t)) fdx i My (123)

by numerical integration if necessary, once the nonlinearity g{x} and

first-order input probability density function p(])(x) are specified.
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Symmetric Full-Wave Rectifier

We now specialize to symmetric v-th law full-wave rectifiers as in (4)

and a Gaussian input as in (20). (123) immediately yields moments

_ v /2 F172 P{%l) '

3
I

yz(t) G20 o 172 PG N 15) oo

Appropriate substitution into (122) gives output signal-to-noise ratio

M (c};/og - 1)2
Y[f = IO for independent samples |, (125)

where we define quantity

172 7
il Pz gﬁlg 2> . (126)
2

Equation (125) is a compact expression for the system output signal-to-noise

D(v) =

ratio for any » > 0, requiring no summations.

Special cases of (126) are

0(1)=§,o(2)=3,o(3)=]8ﬁ,D(4)=—§. (127)
Thus, for example, (125) yields
2 2
e =2 =829, (128)
°0
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in agreement with (96) in this case of independent samples.

More generally, since from (91) and (119), we have output signal-to-noise

ratio

v, v 2
M (o.l/co - 1>

uck)

YIF for independent samples , (129)

= LM

ven

then comparison with (125) yields the following identity on the {U(kﬂ

sequence in (92)-(94):

2 w22 TED

U(k) = D(v) = > 7ot i (130)
r ()

This result has been confirmed directly, by letting m = k/2, converting the
recursion on {U(k)} to one on {U(Zmi}, recognizing it as a hypergeometric
function, and using [3, (15.1.20)]. This identity will prove to be very
useful in the accurate numerical evaluation of general result (91) for

symmetric full-wave rectifiers with statistically dependent samples.

We now consider the case where hypothesis H0 corresponds to noise-only

and H] to signal plus noise, that is,

S + N under H1

2
1

o =9, ) (131)
0

N under H0
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where N and S are the independent input noise and signal powers,

respectively. When utilized in (125), we have output signal-to-noise ratio

v/2 2
we oy (8-

which is valid for independent samples and all values of M, v», and S/N.

The basis of comparison (in this section alone, for independent samples)
will be the full-wave square-law detector, which simply corresponds to taking

v =2 in (132):

2
w-40) (133)

In keeping with the discussion surrounding (59), we now equate these last two

expressions above:

v/2 2 2
M S - ~M/s
D(o) - 1 {6 * N> 'q =2 (N) ' (134)

S

where (S/N)S is the input signal-to-noise ratio to the square-law system,
and S/N is that for the general v-th law symmetric full-wave rectifier. The

solution of (134) is

4[]

_N\172 2/v
i [(Qﬁ_)z_l) (%) " 1] W o aiio, (—3—) . (135)
S S
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This is the input signal-to-noise ratio required for the v-th law system to
achieve the same output signal-to-noise ratio as for the full-wave square-law
system, for the independent samples case. It is independent of M, the

effective number of samples.

Although generally a function of the actual square-law input
signal-to-noise ratio (S/N)S, in the case of low input signal-to-noise

ratio, (135) becomes approximately

S 1 1/2 (S S
== = (20(v) - 2 (-) for (i) << 1 . (136)
N v ( ) N/s N/s

This leads to the factor
] 172
Fe(v) = (20(v) - 2) (137)

by which the input signal-to-noise ratio must be increased for the v-th law
device relative to the full-wave square-law system, and which is independent
of the actual input signal-to-noise ratio (S/N)S. Subscript F denotes

symmetric full-wave rectifiers.

The factor FF(v) is tabulated in decibels in table 1 and plotted versus

v in figure 7. They both reveal that, for low input signal-to-noise ratio,

v \ .5 ] 1.5 2 2.5 3 3.5 4

10 log Fg(v) , . 196 .288 .062 0 .049 .181 .376 .625

Table 1. Additional Input Signal-to-Noise Ratio Relative to Full-Wave
Square-Law System; Low Input Signal-to-Noise Ratio,
Symmetric Full-Wave Rectifiers, Selected v, Independent Samples
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the full-wave square-law detector is best. The linear full-wave rectifier
(FWR), for example, requires .29 dB more input signal-to-noise ratio than the
square-law full-wave rectifier, in order to achieve the same output

signal-to-noise ratio (SNR).

More generally, exact result (135) is plotted in figure 8, for various
values of the full-wave square-law input signal-to-noise ratio (S/N)S. The
curve labelled (S/N)S > 0 is exactly that already plotted in figure 7. The
other results for larger (S/N)s seem to indicate that better performance can
be achieved by choosing v» larger than 2, for example, » = 3.5 for (S/N)S =
0.5. However, this conclusion is completely spurious, because the square-law
detector is, in fact, the optimum device to use in this particular case of
independent samples of the input; furthermore, the input samples should all be
equi-weighted. These conclusions are based on the likelihood ratio derivation
in appendix C. This situation serves to accentuate the earlier caution that
the output signal-to-noise ratio of a system with nonlinearities is not a
complete descriptor of performance, and care must be exercised in the use and
interpretation of the system output signal-to-noise ratio; see (41) et seq.

The results in figure 8 for the higher signal-to-noise ratios cannot be used.

Half-Wave Rectifier

We now return to general results (122) and (123), and consider half-wave

rectifiers as described in (3) and a Gaussian input as in (20). Substitution

in (123) yields moments which are half of the values listed in (124). When
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employed in (122), there follows for the output signal-to-noise ratio,

M (c}"/og - 1)2 ‘
Yy = 20(3) — 1 for independent samples , (138)

where D(v) was defined in (126). For example,

2
= (139)

[0 ) 4

YIH(v o 2) =

Sl

for the square-law half-wave rectifier; compare this result with (128) for the

full-wave rectifier.

Generally, from (102) and (119), we have

v, v 2
M G'I/OO - 1)

ﬁ (k)

k=1

Yy = for independent samples . (140)

Comparison with (138) yields the identity

o0
> k) = 20(v) (141)
k=0

Coupled with (130), this yields

2 Aas)
U(k) = D(v) = r‘Z ol . (142)
k=1 2
odd
Thus, both the even and odd sums on Uk give exactly the same value, D(v).
The result in (142) has been confirmed directly by letting m = (k-1)/2,
converting the recursion on {U(kﬁ to one on iU(2m+15}, recognizing it as a

hypergeometric function, and using [3, (15.1.20)]. This identity will prove
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to be very useful in the accurate numerical evaluation of general result (102)

for half-wave rectifiers with statistically dependent samples.

We now again consider the case where hypothesis H_ corresponds to

0
noise-only and H1 to signal plus noise; see (131). Then (138) for the

output signal-to-noise ratio becomes

/2 2
YIH=2[)(r:ﬁ[6+%> "] ' i)

which is valid for independent samples and all values of M, v, and S/N.

For small input signal-to-noise ratio, this is approximately

2 2 ’
M v S
YIh % 20(v) -1 4 (N) : (i)
When this is compared with the basis in (133) for the full-wave square-law

detector, we see that the input signai-to-noise ratio for the v»-th law

half-wave detector must be increased by the factor

Fa(v) = = (a0(v) - 2)'7%, (145)

in order to maintain the same output signal-to-noise ratio. This factor is

tabulated in table 2 and plotted in figure 9. The most striking feature of

» , .5 1 1.5 2 2.5 2.633 3 3.5 4

10 log Fy(v) ] 5.18 3.16 2.35 1.99 1.87 1.865 1.90 2.03 2.23

Table 2. Additional Input Signal-to-Noise Ratio Relative to Full-Wave
Square-Law System; Low Input Signal-to-Noise Ratio,
Half-Wave Rectifiers, Selected v, Independent Samples
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these results is the large degradation, relative to the full-wave square-law

system, suffered by employing a half-wave rectifier for independent samples.

For example, a linear half-wave rectifier requires an additional 3.16 dB input

signal-to- noise ratio in order to realize the same output signal-to-noise

ratio as a full-wave square-law detector, while the square-law half -wave
rectifier requires 1.99 dB additional input signal-to-noise ratio.

Amelioration of this degradation in the case of statistically dependent

samples will be demonstrated later for bandpass spectra with various values of

Q.
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Figure 3. Additional Input Signal-to-Noise
Ratio Relative to Square-Law System; Half-Wave
Rectifiers, Low Input Signal-to-Noise Ratio
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FLAT BANDPASS SPECTRUM AND BOX CAR FILTER

In this section, the input spectrum is taken to be flat in a bandwidth
W about center frequency ifc; see figure 3. The Q of the spectrum will be
varied from its minimum of 1/2 to values large enough that the limiting

performance achieved by a narrowband spectrum is virtually achieved.

The sampled version of the detection system, depicted in figure 2, will
be considered, with the weights {w(nj& in the accumulator set equal to the
same value; this is the box car filter of (10). Sampling increment a is
arbitrary, as is the power law v of the half-wave and full-wave rectifiers to
be considered. When A is taken very small, the system performance will
approach that for a nonimpulsive filter; thus, there is no need to
additionally evaluate the nonimpulsive results of (95) and (103). On the
other hand, when A is taken large, the effects of undersampling will become

apparent.

The basis of comparison for the v-th law rectifiers considered here has
been delineated in an earlier section, in particular, in the discussion
surrounding (59) and (60). We confine the numerical results for the decibel
difference in (60) to low input signal-to-noise ratio, and specialize the
general results in (91) and (102) for symmetric full-wave and half-wave
rectifiers, accordingly. The detailed computational procedure is presented in
appendix D, for both the symmetric full-wave rectifier and the half-wave

rectifier. Sampling increment & is related to integration time or observation

time T according to
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T=Ma, (146)

where M is the number of samples employed in box car filter (10).

Full-Wave Rectifier; Variable Sampling Increment

In this subsection, the nonlinear detector is taken to be a v-th law
full-wave rectifier. The first result in figure 10 gives the additional
signal-to-noise ratio in dB required by the full-wave rectifier relative to
the standard of (57), for TW = 50, Q = 1/2, and M varied from 50 up to 500.
Since A is given by (146) in terms of integration time T and number of samples

M, there follows, for the sampling frequency fs = 1/4, the ratio

W We T TH (147)

Thus, for exampie, M = 100 here corresponds to a ratio of sampling frequency
fS to bandwidth W of 100/50 = 2; since Q = 1/2, this value of M corresponds

to sampling of an input process with a lTowpass spectrum, at twice the highest
frequency, meaning independent samples. These frequencies are indicated in
the figure. The dB numbers entered at this value of M on figure 10 for v = 1,
2, 3, are in fact exactly those already listed earlier in table 1 for

independent samples.

Increasing M to 200 leads to a sampling frequency 4 times fh(= W), and
to dB values virtually equal to the saturation values entered at M = 500.
Thus, it is possible to lower the required input signal-to-noise ratio by
.133, .018, .077 dB for v =1, 2, 3, respectively, by employing larger M
values than lead to independent samples. The slightly negative dB values for
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large M, achieved by the full-wave rectifier with v = 2, are consistent with
the discussion surrounding (58), and merely reflect the fact that the standard
is not the absolute optimum output signal-to-noise ratio.

On the other hand, decreasing the sampling frequency below 2f that

h!
is, decreasing M below 100 for this example of TW = 50, leads to a significant
degradation of performance, as witnessed by the rapid rise of the dB curves in

figure 10, to the left of M = 100.

In figure 11, the only change is to increase Q to 5/6; this is a flat

bandpass spectrum. Since, in general, using (12) and (146), the ratio

et s T —— (148)

then the value of M = 133 in figure 11 corresponds to fs = th = (B/3)W.
Again, this is seen to correspond to a prominent knee of the performance
degradation curve. Increasing M to 250 realizes essentially the same input dB
values as for M = 500; however, for v = 2, M need only be increased to 150 in
order to essentially attain the large-M asymptote. It is worthwhile noting
for future reference that the frequency ratios in (147) and (148) are directly
proportional to M, the number of samples employed in the box car filter. The
seemingly anomalous behavior of figure 11 near M = 75 is more pronounced in

the next figure and will be explained there.

In figure 12, the only change is to increase Q to 2, while keeping

TW = 50. Reference to (147) and (148) reveals that M = 250 now corresponds to
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fS = 2fh = 5W; there is a slight improvement by increasing M to 300.

However, the most striking feature of this figure is the return of the
required input signal-to-noise ratio dB values to very low levels for M in the
range (125,150). To explain this behavior, we first note from (147) and

(148) that fS = f

= 2.5W at M = 125, while fs = 1.2f, = 3W at M = 150; thus,

h h
the sampling rate is still larger than twice the bandwidth W of the input
process (and remains so until M decreases to 100). However, since fS is
smaller than 2fh, we have an example of undersampling, without significant

loss in performance.

The mathematical explanation of what is happening requires a close
examination of the denominator of the system output signal-to-noise ratio,
Y in (91). In appendix E, some useful frequency domain representations
of the denominator of (91) are derived. In particular, a combination of

(E-8) and (E-12) yields the approximate result

2
> 8m) Sf(na) =1 fdf [p(”(f)] , (149)
n

Ya

where

B0 = S M (r -0} foran f (150)

n

is the aliased (periodic) version of P(k)(f), which, in turn, is the Fourier
transform of pk(t); see (47). The approximation (149) is valid when the TW

product is large; see (E-8) for details.
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The leading term in the denominator of signal-to-noise ratio YiF in
(971) is equal to U(2) times the result (149). The latter quantity is the
average value under the square of the aliased input spectrum. In order to
realize large values of Y then (149) should be small. Plots* of
B0 (f) in figures 13 and 14 for Q = 2, with M = 125 and M = 150,
respectively, reveal that none of the aliased lobes overlap, despite the
undersampling; the cross-hatched lobes represent the input (unaliased)
spectrum. Thus, the integral of (149) remains constant (and small) for M in

the range (125,150).

However, if M is decreased below 125, the aliasing lobes in figure 13
bordering f = 0, for example, begin to overlap, thereby doubling the value of
3(])(f) in this region. Similarly, if M is increased above 150, the lobes
in figure 14 bordering f/fC = +.75 begin to overlap. In both these cases,
the value of (149) would increase significantly, thereby decreasing the system
output signal-to-noise ratio Yif in (91), or alternatively increasing the
required input signal-to-noise ratio. In order to avoid this degradation,
overlapped aliasing lobes must be avoided, either by looking for "“clean"
regions for high Q, as in figures 13 and 14, or by sampling at rates greater

than twice the highest frequency of the input spectrum.

*A slight tilt has been added to the spectral shape in order to more easily

identify which lobes result from positive and negative frequency components.
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The results in figure 12, as well as all the other figures, have not been
Timited to considering just the k = 2 term in the denominator of the system
output signal-to-noise ratio y, nor have they utilized the approximations
(149) or (E-8). Instead, they have been obtained by utilizing K = 1000 terms
in the series, and by actually conducting the exact summations in the
denominators of (91) and (102). The discussion above, relative to figures 13
and 14, was presented in order to give a simple physical explanation of what

is happening, and thereby furnish guidance to further cases of interest.

In figure 15, Q is further increased to 3, again keeping TW at 50.
Reference to (147) and (148) indicates that M = 350 corresponds to
fs = 2fh = TW; slightly improved performance can be achieved by increasing
M to 400. Substantially the same performance level can be achieved, however,
for M in the range (175,250), corresponding, respectively, to undersampling
with fs in the range 3.5W to 5W. Furthermore, there is an additional
possibility for M in the range (117,125), with sampling frequencies in the
range fs = (2.34W, 2.5W); it may be verified by use of (147) and (148) that
the aliasing lobes of 3(1)(f) do not overlap for this range of sampling
frequencies (as shown in figures 13 and 14). However, only the v = 2
full-wave rectifier achieves the level attainable at large M, whereas the
v =1 and v = 3 rectifiers suffer additional degradation. This is due to the
fact that the denominator series in (91) terminates for v = 2, but does not
terminate for v = 1 or 3; thus, the higher-order terms in (91) cause
additional unavoidable degradatioa through leakage of higher-order spectral

terms, as indicated in appendix E.
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Full-Wave Rectifier; Variable Q

The curves in the previous subsection all saturated for large numbers of
samples, M; that is, the required input signal-to-noise r;tio approached that
for a continuous box car filter. Here, we will take M = 1000, meaning that we
are effectively considering only the continuous box car filter, and look now
at the required system input signal-to-noise ratio as a function of the Q of
the spectrum, but not limited to the four discrete values of 1/2, 5/6, 2, and
3 earlier. The first result in figure 16 indicates a rapid drop in required
input signal-to-noise ratio as Q increases above .5. The region (.5,.6) for Q
is blown up in figure 17 to better illustrate the decay. The main conclusion

from these two figures is that once Q-.5 is larger than approximately 1, the

required input signal-to-noise ratio is essentially independent of Q.

To illustrate the relative independence of the results on the specific TW
product (once it is large), figure 18 was computed and plotted for TW = 100;

this result can be compared with fiqure 17 which utilized TW = 50.

Finally, in a similar comparison, figure 11 for TW = 50, Q = 5/6 was
rerun for TW = 100, Q = 5/6 in figure 19. Except for the doubling of the
abscissa values (M = 1000 vs 500 earlier), figures 19 and 11 are very
similar. The fact that M must be doubled if TW is doubled is reasonable,
whether that doubling comes about from increased T (more observation time) or

increased W (higher bandwidth, meaning faster sampling).
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Half-Wave Rectifier; Variable Sampling Increment

We will repeat the series of plots given earlier in figures 10, 11, 12,
15, but now for v»-th law half-wave rectifiers. The first result in figure 20
gives the required input signal-to-noise ratio (relative to the standard) for
Q = 1/2, a lTow-pass spectrum. The levels of required signal-to-noise ratios
are much greater here for the half-wave rectifiers than for the corresponding
full-wave rectifiers in figure 10. M = 100 corresponds to sampling frequency
fs = 2fh = 2W; increasing M to 200 essentially reaches the saturation
value attained for large M (continuous filtering). The dB numbers entered at
M = 100 agree with those given earlier in table 1, since this corresponds to

independent samples. (When TW is doubled to the value 100, virtually the same

plot results when the abscissa scale, M, is also doubled.)

When Q is increased to 5/6 in figure 21, a marked improvement in
performance occurs. The value M = 133 corresponds to fS = 2fh = (8/3)W;

increasing M to 200 achieves saturation values, at which point fs = 3f, = 4W.

h
However, the performance relative to the corresponding full-wave rectifier

result in figure 11 is still poorer.

For Q = 2 in figure 22, although there is a marked dip in the required
input signa]—to;noise ratio for M in the range (130,150), the levels achieved
are not as low as those possible for larger M. For example, an additional
.24 dB is required at M = 150 for » = 1 than at M = 400 for » = 2. At
M = 125, the dB values in fiqure 22 are very large; this is due to an aliased

component, a la figures 13 and 14, abutting frequency f = 0. This result is
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distinctly different from the corresponding one for a full-wave rectifier in

figure 12.

The half-wave rectifier result for Q = 3 in figure 23 is somewhat similar
to the corresponding full-wave rectifier result in figure 15. However, there
is much more degradation here for M near 120, and moderate degradation for M
in the range (180,250). Essentially the same performance for » = 2 is

achieved at M = 350, fs = 2f,_ as at M = 500, fs = (20/7)fh, but losses

h
are encountered for sampling rates between these values.

Half-Wave Rectifier; Variable Q

To determine the explicit dependence of performance on the Q of the input
spectrum, we eliminate the dependence on M, by setting M equal to a large
value, namely 1000, thereby essentially realizing a continuous box car
filter. Then we vary Q over the range (.5,3) and plot the results for TW = 50
in figure 24. Saturation is achieved for Q > 1.5 at acceptably low values;

however the performance degrades considerably for small Q.

Comparison of figure 24 with the corresponding result in figure 16 for a
full-wave rectifier (both with TW = 50 and M = 1000) reveals that by the time
Q reaches 1.5, the half-wave and full-wave rectifiers realize virtually the
same performance level, regardiess of the value of v. For example, the dB
numbers listed above Q = 3 are almost identical. This confirms the results

anticipated in the analysis presented earlier in (78)-(80) et seq.
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The region (.5,.6) for Q is blown up in fiqure 25; it indicates

approximately that if

(151)

=lka
=

1
Q—2>

a plateau in performance is essentially realized, while a more gradual
improvement takes place for larger Q. This same bound on Q was previously
encountered in (111) when we discovered the condition under which the linear
half-wave rectifier and the symmetric linear full-wave rectifier have similar

performance. The analysis in (109)-(117) is again directly relevant here in

regards to overlapping aliased spectral lobes.

If TW is increased to 100, figure 26 illustrates very similar behavior,

except that the sharp transition region near Q = 1/2 is approximately half as

wide; this is consistent with (151).

In a similar vein, for a fixed Q of 5/6, a comparison of results for

™

100 in figure 27 can be made with the corresponding earlier result for

TW

50 in figure 21. Except for the doubling of the M scale in figure 27,

the two sets of curves are virtually identical.
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OTHER SPECTRA AND FILTERS

Gaussian Spectrum

A1l the previous results pertained to the flat bandpass spectrum of
figure 3. 1In order to ascertain how important the details of the input

spectrum are, we consider in this subsection the input normalized correlation

p(T) = cos(2xf T) exp(— % w2-52> , (152)

with corresponding spectrum given by (47) as

] F-f) £ e\
72, exp [-2w|— + exp (-2w | : §153)

This is a pair of Gaussian lobes centered at ifc.

P (f) =

It should be observed that

[y |

> =W, (154)
2 i T
df exp” |-2w W

independent of center frequency fc. Thus W in (152) and (153) is the

effective or statistical bandwidth of the positive lobe of input spectrum
o(1)

(f), as if the negative lobe were absent. Also, the relative value of

the positive lobe at frequencies f = fc + W/2 is exp(-v/2) = .208 = -6.82 d8B.
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More generally, the effective bandwidth of the complete spectrum

P 6y s

[(ar 2D e . ) 20

> = > = > (155)
fdf (1) (f) jdf p(1) 7y T+ exp(=4nQ7)
Unfortunately, this depends on Q = fc/w. If we were to use this latter
result in standard output signal-to-noise ratio A in (51), we would have
2
G- )
= TW > (156)
1 + exp(-4vQ7)
and (56) would yield
2 o
i 1
_ m(-ﬁ-) — . (157)
1 + exp(-4«Q7)

The dependence on Q is undesirable, although it is a weak dependence; for
example, for Q = 1/2, the exponential in (157) is .043. Hence we drop this

dependence, and use the usual basis (57) again.

If we use (91) for g or (102) for AT with the S+N versus N

hypotheses of (56), and a small input signal-to-noise ratio, we have

E- 1

where

E 52 U(K) Z B(n) pé(nA) , (159)
n .
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the sum being over k = 2, 4, 6, ... for full-wave rectifiers, and over
k=1, 3, 5, ... for half-wave rectifiers. If we now equate the output

signal-to-noise ratios, that is, set

2 2

M »_ § 2
YI(F,H) ~ = =Tw<ﬁ) ’ (160)

, Z s

then there follows factor
1/2
S/N _ 2 (TW

(S/N)S_v(M Z—) ' (161)

This is the input signal-to-noise ratio required, relative to basis (57).
Recall that W is now the effective BW of the positive frequency lobe; see

(154).

Plots of the relative increase in input signal-to-noise ratio, as given
by (161) and (159), are presented in figures 28 and 29 for the full-wave and
half-wave rectifiers, respectively, for TW = 50 and Q = 5/6. These should be
compared with the corresponding flat bandpass spectrum results in figures 11
and 21, respectively. Except for a general smoothing in figures 28 and 29,
due to the smoother Gaussian spectrum (153), the results are very similar.

Saturation is essentially reached at M = 200, which corresponds to sampling

frequency fS = 3fh = 4W.
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-6 _dB/0Octave Spectrum

In this section, the input spectrum is taken to have a 1/f2 shape 1in
the band (f],fz). There is a difference in this example between the
bandwidth W = f2 i f] and the effective bandwidth, Wes which is
developed in appendix F. The pertinent equations for this case (as well as
the spectral shapes fn for n = -2,-1,0,1,2) are also presented in appendix
F. The results for TW = 50 and Q = 5/6 are given in figures 30 and 31 for
full-wave and half-wave rectifiers, respectively. They are very similar to

the corresponding earlier results with the same parameter values.

RC Filter

A11 the previous examples have employed a box car impulse response, as
given by (10). We now replace this assumption by one in which the impulsive
filter weights are given by samples of an RC filter response, with effective

duration T = 2 RC; see (52) or (72). That is,

w(n) = %E exp<? %% for n >0 . (162)

The effective number of samples is, from (67),

_ [% W(n)]z ) v exp (- &)

M = =
2 a_
Zw(n) 1 —exp(—RC)
n
2 R X RC
=" 1+—2—2‘ for —A>'I. (163)
12 R°C
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For example, for —2 =10 , M= 20(1 +

1
1200

) . Accordingly we set

2_RC
A

&=

(for M >> 1) . (164)

This is consistent with (146) employed for the box car filter. The normalized

autocorrelation is, via (68),

B(n) = exp(— ﬁ—c ln\) = exp(—% ]nl) . (165)

A plot of the relative input signal-to-noise ratio is given in figure 32
for a half-wave rectifier with TW = 50, Q = 5/6, and a flat bandpass input
spectrum. It indicates the same general behavior as corresponding earlier
results for different input spectra and/or filters; the precise numerical
values are a little different, and are a reflection of the particular filter

employed here, namely (162).
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Figure 32. Flat Spectrum, RC Filter,

Half-Wave Rectifier, TW = 50, Q@ = 5/6
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A PITFALL OF THE LONG AVERAGING TIME ASSUMPTION

The general factor by which the input signal-to-noise ratio for a
half-wave v-th law rectifier must be increased, relative to the standard
full-wave square-law rectifier, is given in (D-5). Here, SumH is given in
(D-1), in terms of the normalized autocorrelation (68) of the filter weights.
Under the long averaging time assumption, as discussed earlier with regard to
(74) et seq., the quantity B(n) is replaced by its origin value of 1 for all

n. Then the quantity S(k) in (D-3) is replaced by
=k
3(k) = Z pg(nd)  for k 21, (166)
n=1

and factor (D-5) is replaced by

1/2
W #
(M sH> , (167)

where

wm
"

o0
y=20(v) -1 +2 E U(k) S(k) (168)
k=1

is an obvious modification of (D-2).

A similar approach for full-wave v»-th law rectifiers yields

signal-to-noise ratio factor

172
TW ~
(_M SF> ' (169)

where
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0
“s'F = D(v) -1 + 2 E U(k) Sck) . (170)

k=2
even

It will be seen from (168) and (170) that a fundamental calculation required
is that described in (166), whether utilizing the full-wave or the half-wave

rectifier. In particular, for the flat bandpass input spectrum given by

figure 3, with normalized correlation (13), the summation in (166) is very
slowly convergent for Tow order k. This problem is treated in appendix G,

through a judicious combination of Poisson's formula and numerical calculation.

Results for the long averaging time assumption are superposed as dotted
lines in figures 33 and 34 over the earlier results from figures 24 and 25,
respectively, for half-wave rectifiers, TW = 50, M = 1000. As Q approaches
.5, there is a marked difference between the two results. For example, for
v = 2, the approximation yields .34 dB whereas the exact results is 1.93 dB.
And for v = 1, the comparison is .17 dB versus exact value 3.12 dB, almost a 3
dB discrepancy. This serves to point out the pitfall of employing the long
averaging time assumption when inappropriate. Regardless of the size of the
TW product, there will always be a narrow range near Q = 1/2 where the exact
signal-to-noise ratio drops sharply from the values listed in tables 1 and 2
to their eventual asymptotic values for large Q. This transition is ignored
by the long averaging time assumption and can be overly optimistic in its

performance prediction.
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SUMMARY

The losses incurred by using various full-wave and half-wave v-th law
rectifiers with different filter characteristics, sampling rates, and input
spectra have been evaluated and plotted for a number of cases. These results
allow for a ready comparison of many alternative choices and give quantitative

bases for a selection procedure.

The possibility of deliberately undersampling an input process with a
high-Q spectrum, with insignificant loss of performance, has been analyzed and
numerically investigated. The exact choice of sampling frequency is crucial,
but can be easily calculated once the lower and upper frequencies of the
band-1imited input spectrum are specified. Even though the system
nonlinearity gfx} creates harmonics and intermodulation products, and the
undersampling process creates aliased spectral replicas, it is still possible,
through proper choice of the sampling rate, to control all these undesirable
by-products and achieve a near-minimum input signal-to-noise ratio for

specified output deflection.

The danger of using the long averaging time assumption when inappropriate
has been demonstrated via numerical example. A1l the results presented in
this report have not employed this assumption, but have utilized the precise
filter characteristics and finite time extent. Programs for these evaluations
are presented in tables H-1 through H-4 in appendix H. Changes required to
handle the Gaussian spectrum or the RC filter, instead of the flat bandpass

spectrum or box car filter, respectively, are also presented there.
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The losses incurred by a half-wave rectifier for low-Q inputs are very
significant and should be avoided, either by utilizing a full-wave rectifier
or by filtering out the low frequency components of the input, prior to
sampling and nonlinear distortion. Generally speaking, the square-law

detector, v = 2, offers the best performance.

Direct comparisons of these results with those in [1] are not possible,
because there are no common examples. Also, most of the results in [1] are
for very narrowband spectra and employ a long averaging time assumption, in
addition to using very few terms in the series expansion for the output

variance.
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APPENDIX A. DERIVATION OF RECURRENCE

The quantity of interest is given by (85):
o0
L(k) = fdw w” B(W) He (W) for all k 20 . (A-1)
(6]
First of all, using (21),

L(0)

[ oo
j~dw w’ a(w) = (2«)—]/2 \I dw w’ exp(—w2/2) =
o °

7~ -1

il
(oG _S‘dx (2x) 2 exp(-x) = 2° o 2 ["(%) (A-2)
(0]

17

il §
2

In a similar fashion, there follows

1

vl 1
2

v 2 r‘(%+1) . (A-3)

v+

L(1) = S‘dww T s(w) = 2
[}

We now employ the recurrence [3, (22.7.14)]

Hek(w) = W Hek_1(w) - (k-1) Hek_z(w) for k > 2 . (A-4)

Substitution in (A-1) yields
o)
L(k) = de W g (w) He, ,(w) - (k=1) L(k-2) for k > 2 . (A-5)

We now integrate by parts, using

u=w , dv = dw g(w) Hek_](w) .

du = dw (v+1) W', v = -o(w) He, ,(w) , (A-6)
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the last relation from [3, (22.11.8)]. The integral in (A-5) then becomes,

since v > 0,

(>
[.w"” 8(w) Hek_z(w)] + (vH1) fdw WoB(w) He, (W) =
0 0

= (v+1) L(k-2) . (A-7)
Use of this result in (A-5) immediately yields
L(k) = (v+2-k) L(k-2) for all k > 2 . (A-8)

The starting values for this recurrence have already been furnished in

(A-2) and (A-3).
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APPENDIX B. DERIVATIONS OF (110) AND (112)

We employ (73) and (48) to develop the left-hand side of (110) according
to

fdt «(T) p(T) = jdt Jau hu) h(u- fdf exp(izefr) P () =
[du h?(u)

2, 771 (1)
= [fdu h (uﬂ ‘fdf P (f) ,fdu h(u) Jht h(u-T) exp(i2«fT) =

(N 2
fas 2D ey Juce)l
2 ] (B—])
Sdf 6

where we let x

u-T in the innermost T integral in the second line, and used

Parseval's theorem for the denominator term.

For the impulsive filter case, we utilize (68) and (48) to express the

left-hand side of (112) as

25 w(m) w(m-n)
m . (1)
B(n) p(na) = df exp(i2«fan) P (f) =
nZ ’ 2 2 w(m J

n

-1
= [2 wz(m{l jdf (M £y Zw(m) E w(m-n) exp(i2nfan) =
m n

(1) 2
Lo P__L(f) LTE3 ] e B
zg w (m)
m
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where we let k = m-n in the innermost sum on n in the second line, and used

H(f) = :E w(n) exp(-i2«fan) , (B-3)

n

which follows from (5) and (8). Since H(f) obviously has period 1/4 in f, an

integral over any period of the power transfer function becomes

S‘df ()| ¢ = df Z w(m) w(n) exp(i2w«fa(m-n)) =
V/a Va mn
=3 2 wm =3 b0, (8-4)
m

using orthogonality of the exponentials for m # n. Thus (B-2) translates into

(1) 2
S 8(n) s(n) - far oM (e) lH%f)] . (B-5)
- s af [ueel

Ya

Equation (B-4) is a special case of the useful result that

b(n) . (B-6)

B |~

j-df IH(f)]2 exp(i2nfan) =]X E w(m) w(m-n) =
Ya m

The method of derivation is similar to (B-4), and (62) has been employed for

the final identification.
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APPENDIX C. LIKELIHOOD RATIO PROCESSOR FOR INDEPENDENT SAMPLES

For a zero mean Gaussian input process with variance 02, the joint

probability density function of M independent samples Xy wees Xy is
M x2
m
P(Xy, cevy X)) = expi{~- =5/ . (C-1)
! M -[I— 27 © 202
m=1
The 1ikelihood ratio for hypothesis Hy versus Hg is
M M
p](x]- cavs XM) G_O 1{1 1 2
= exp - X . (C-2)
po(x1, o o o XM) o 2 d2 c2 m
0 1 m=1
The sufficient statistic of the samples is obviously
M
2 -
> <, (c-3)
m=1

which is interpreted as an equi-weighted sum of the squared input samples.
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APPENDIX D. COMPUTATIONAL PROCEDURES

The denominator of output signal-to-noise ratio Y1H in (102) for

half-wave rectifiers is

< o0 O
Sum, = > U(k) > B(n) pf(na) = > U(k)E f2 > B p';,m@: (0-1)

k=1 n k=1 n=1

: R
= MD(v) -1 + 2 ;E; U(k) S(K) . (D-2)
k=1

where we used (141) and defined the inner sum on n in (D-1) as

o)
S(k) = :Eg B(n) pg(na) for k 21 . (D-3)
n=1
The decay of S(k) with k is fast enough that the infinite sum on k in (D-2)
can be terminated and yet realize very accurate results for the quantity
SumH.
For the S+N versus N input hypotheses of (131) and low input

signal-to-noise ratio, the output signal-to-noise ratio (102) becomes

approximately

2 [\2
- M v (S S -
YIH % Sum, 4 (N> for 1. (D-4)

[f this is equated to the standard value in (57) with input signal-to-noise
ratio (S/N)s’ the amount by which the input signal-to-nojse ratio for the

half-wave rectifier must be increased is the factor
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172
SIN__2 [ i
(S/N). = o (M 5_“'“H> : (0-5)

This quantity is plotted in dB for a variety of values of v, sampling rates,
observation times, and input spectra, as discussed in (59) and (60). The way
in which sampling increment A is related to the effective duration T of the

filter is according to
T=Ma, (D-6)

where M is the effective number of samples of the filter. Thus the ratio of

sampling increment to inverse bandwidth is

R (' )
T/W = Wa =Ty (0-7)

in terms of the time-bandwidth product TW and number of samples M.

For the full-wave rectifier, the only change is to 1imit the summation in

(D-1) to even k, with the result

e o] 0
SumF E U(k) E + 2 2 B(n) pl(()(nA)

k=2 n=1
even
= D(v) -1 + 2 :EZ Uck) S(k) , (D-8)
k=2
even

where we used (130) and (D-3). The factor corresponding to (D-5) is now

172
SIN_ _ 2 (W )
(S/N) = <M 5“”‘F> (D-9)

for low input signal-to-noise ratio. This quantity has been plotted in dB for
various v, TW, M, and input spectra.
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APPENDIX E. EQUIVALENT FREQUENCY DOMAIN REPRESENTATIONS
In this appendix, we derive some useful equivalent representations of the
denominator terms in the output signal-to-noise ratios of (91) and (102). We
begin by considering a general function g(T) with Fourier transform

G(f) = \{ dT exp(-i2«fT) 9(T) . (E-1)

Then the summation of interest is

;E? B(n) g(na) = 5%67' 22 g(na) a h(df 1H(f)l2 exp(-i2«fan) =
n n ) |/A

WL)' fdf (12 > exp(-i2afan) g(na) a (E-2)

7 0

upon use of (68) and (B-6), along with the observation that b(n) in (62) is

even in n; the integrals over frequency f are over any interval of length

1/4. But the summation over n in (E-2) is expressible as

Jdt exp(-i2«fT) q(T) ZE A &§(T-na) =
n

= 6(f) @2 6<f - §)= Z GQ‘ - %)s G(f) , (E-3)
n n

which is the aliased version of G(f) in (E-1). Here we used the fact that the

Fourier transform of a product is the convolution of the corresponding Fourier

transforms. Employment of (E-3) in (E-2) yields
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S 8(n) g(na) = ﬁ df JHee)] % B (E-4)
n Yo -

in terms of the (periodic) power transfer function of the filter H and the

aliased spectrum G.

Now identify general function g as
k
q9(T) = p (T) , (E-5)
in which case

acf) = P () = fdt exp(-124fT) o5(T) , (£-6)

according to (47). Then (E-4) becomes

> 8(m) P8) = 5oy fdf lee)) 2 Ky (E-7)
n Ya
in terms of the aliased spectral versions of P(k)(f).

If the spectral width, 1/T, of lH(f)l2 is narrow relative to the
bandwidth W of the spectral functions in (E-7), (see figures 5 and 6), then

an approximation to (E-7) is afforded by observing that

.Sh
> B(n) pf(ne) = 5(]7) f af Jaen)] 2 3 (r) -
. -5/
.5/a
= 5085 PR 51 af Juee) 2 =150 , (€-8)

—.5/a
and using (B-4).
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According to (E-3) and (E-6), we have, for k =1,

A = > P“)(f - %) (E-9)
n

which is the aliased version of the input spectrum to the detection system of

interest.

For k = 2, observe first from (E-6) that

Py = pM ey @ P4y = j du Py PO oy (E-10)

Then the aliased version is

2 = > P(z)(f - %)= > jdu P (u) p(”(f -n- u) -
n

n

_ g du Py ) (5-u) ;du Py 3 oy (E-11)

Ha
by use of (E-9) and the periodicity of ?(]). This last relation states that

the aliased spectrum ﬁ(z)(f) can be found by convolving the aliased input

~(1)

spectrum, P (f), over one period.

In particular, a special case of (E-11) is

32 0y = Vf du [‘ﬁ(])(u) 2 (E-12)
A

using the even character of the input spectrum.
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APPENDIX F. VARIOUS INPUT SPECTRA

The input spectra considered in this appendix are characterized by shape
£7 for f in the range (f],fz), and are symmetric about the origin f = 0. We

still define

¢ T U= (F-1)

However, the effective bandwidth of the positive frequency components of this

spectral shape is

gfz : 2 ,

£ i énﬂ _ f_n+1)2
. 1 _2n +1 2 1 (F-2)
e fa ) (n+1)2 f§n+1 _ f$n+1 :

S‘ df £" '

f

and must be accounted for, in the evaluation of the standard output

signal-to-noise ratio in (51).

The results for the normalized correlation and the effective bandwidth

are listed below for various values of n, where we use the abbreviations

ay = va]YT, a, = ZﬂszT. (F-3)
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n = -2: -6 dB/octave

COS(a1)

p(T) = ;;—:—;;'[gi(al) - Si(a,) + a

= COS(a])

102

W oyl208-3
i 12 92 +1
n=-1: -3 dB/octave
Ci(a,) - Ci(a,)
p(T) = 2 !
Anay/ay) 7
]
Q+3
. w@z _ 1_) o2 2
e 4 q - 1
2
n.= 0: 0O dB/octave
sin(cz) sin(a1)
e(T) = . R ,
2 1
we = W
n=1: +3 dB/octave
_ @, Sin(a2) - o S'in(a.l) + COS(QZ)
P(T) = 2 2
32 - G-I
o e
e 2 :
12 Q° + 1

i cos(az):]
a2 ’

(F-4)

(F-5)

(F-6)

(F-7)
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'2: +6 dB/octave

3 ' [ 2 %2
p(T) = 3<;2 - a]> (x~ - 2) sin(x) + 2 x cos(x) .

*

e
1]

144 0% + 24 0% +1

Wo=W .
144 ¢t + 72 0% + 1.8

e

(F-8)

The way in which effective bandwidth we enters the standard output

signal-to-noise ratio is via (51); namely

2
_I(s -
Ya Z(N) oy (F-9)

S

de P(()U(f)]

(1)
th Py (f)

If we equate (F-9) to (158), and solve for the required input signal-to-noise

since

(F-10)

ratio, we obtain

TW 1/2 1/2 1/2
o0 =%(Te§> (T“ Z) (—J—3> , (F-11)

12 Q + 1

where > is given by (159); the last equality in (F-11) applies only to the

-6 dB/octave spectrum and has utilized (F-4).
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APPENDIX G. EVALUATION OF (166) FOR FLAT BANDPASS SPECTRUM

We are interested here in calculating the quantity

OO
Sy = S PMay fork 21, (6-1)
n=1
where the relevant normalized correlation is

p(T) = cos(2xf.T) sinc(WT) . (G-2)

Sampling increment A is arbitrary in relation to center frequency fc and

bandwidth W.

Frequency Domain Representation

Since pk(T) and P(k)(f) are related by Fourier transform (47),

P ey = [ dr exp(-ianfr) SFeo) (6-3)
their samples are related through Poisson's formula

a0 (=]
Z oX(na) =]K E P(k)(%); (G-4)

n=-—eo N=-o0é

see [5, page 36, (36)], for example. This relation is extremely useful for a
bandlimited input spectrum, since its k-fold convolution P(k)(f) will have

Timited extent in f, leading to finite summations on the right-hand side of

(G-4).
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A more appropriate version of (G-4) for our use, where p(T) is real and

even, is furnished by the following:

[~ o} o0
Sty = > Sy =11 > omay -1 =
n=1 n=-c0
< () < (k) ), 1
e k) fn 1_1 ( n U L -
= 24 ZP (A)_Z—AZP (A>+2AP Wit a0
n=-e0 n=1

Evaluation of Auxiliary Functions

Before directly evaluating
P(k)(f) = f dC exp(-i2vfT) [Eos(waat) sinc(Wti]k , (G-6)
we first consider the auxiliary functions

6, (u) = ~(dx exp(-i2wux) sincf(x) for k > 1 . (6-7)

It is readily shown that

1 for Ju] < 1/2
G](u) = rect(u) =41/2 for Jul =1/2%. (G-8)
for | > 172

By repeated convolution, there then follows (see [6, pages 11, 12, 33, 34])

1 - uj for juj <1
G,(u) = ) (G-9)
0 for jul >1
3 2 ]
i for ]u] < >
~{ 1q 2 1 3 r
Gs(u) = 8(3 2ful)® for 5 < ful < 5 [ (G-10)
0 for Ju >3
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%(4 - 6u® + 3[u|3) for Juf <1
Byu) = 2(2 - )3 for 1< Ju) <2 b (6-11)
0 for [ul > 2

Generally, Gg(u) = 0 for |u] > k/2.

Evaluation of P(K)(f)

By expanding the k-th power in (G-6) according to

cosk(y) = lf [%xp(iy) + exp(-iy)]k . (G-12)
2

and using (G-7)-(G-11), there readily follows

b - g (50 2 [1(5) o (5. o
RCRE N ELAPOl) @
L) = _;3 j i 3fc> + 36, (f 5 fcﬂ, (6-15)
]Z o4 gy o 1;ME4<f i 4fc> a5, (fi_ZfC) + 6g4(£ﬂ , (G-16)
where the + shorthand notation is explained in (G-13).

Equations (G-13)-(G-16) coupled with (G-8)-(G-11) enable us to evaluate
the desired quantity in (G-5) for k = 1,2,3,4, in a very efficient manner,
since all the sums in (G-5) terminate after a finite number of terms. On the
other hand, for k > 5, we resort to direct numerical evaluation of (G-1) and
(G-2), since the summands decay at least as fast as 1/n5 and can be

terminated with a desired level of error.
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Error Analysis

Substitution of (G-2) into (G-1) and use of A = T/M yields

= k
§(k) = Z [cos (2«01:-'4’- n) sinc <T_l;d4 n)] . (G-17)
n=1

If this sum is conducted through N terms, the error E is upper bounded

according to

Q.
7T

<t L8]
E < < '—] ]
< =k K P (6-18)

n=N+1 (c‘n) N -1 (k"]) N

where o« = «TW/M. Solving for the N required, we obtain

[inf(k -1) of}

N> N (G-19)

which depends on k, as well as « and specified error E. This Tlimit was used

in (6-17) for k > 5, with E = 1.E-10, to get the results in figures 33 and 34.
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PROGRAM LISTINGS

In this appendix, we collect all the programs that were used to generate

the numerical results and figures in the main body of the report.

The

auxiliary functions Si(x) and I’(x) common to these programs are listed in

table H-6.

In order to convert table H-1 to the Gaussian spectrum instead of the

flat bandpass spectrum, the following changes and additions are required:

183 Te=.S%PI1*TwsTws0MEM
111 F=TesHz%H=

112 IF Fx1@38, THEHW 21@

128 Rho=CRSiTosHs s *ESP O -F 2

I GAUESIAM SFECTRUM

In order to convert table H-2 to the Gaussian spectrum, the following

changes and additions are required:

18 Te=.5%FITweTws OMeM
111 F=Te+Hz+H=

112 IF Fx18B8, THEH zap

12 Fho=sCOScToxHs h«ESFPC-F2

In order to convert table H-1 to the RC

filter, use:

181 Te=z.. N
11 FOF Hz=t1 TO M+*15S
148 PL=E«“Fo-Te*tzo

! GRHUSSIAN SPECTRM

filter instead of the box car

| FC FILTER
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In order to convert table H-2 to the RC filter, use:

191 Te=2. <N
118 FOR Mz=1 TO H#1S
138 Fk=EXF{-TesHz) .\ RC FILTER

Table H-5 1ists the program used for investigating the long averaging
time assumption; however, it is not recommended for use, since the earlier

programs are capable of exact evaluation of required signal-to-noise ratios.

The word DOUBLE denotes INTEGER variables in Hewlett-Packard BASIC on the

9000 computer.
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Do A

[ B n R I TR [
[x(]

DB A

=
DA

-~
!

N of= 00 fo0 o= 0
Dax) 0

]
)
T
El
5]
1
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Table H-1. Full-Wave Rectifier, Flat Bandpass Spectrum, Box Car Filter

o
z
il

£n

[l

— o N
[ax] L

-
=
9.
R
[OEDc R L

—
|

~

g

ODOUELE 0
REDIM So1lskD
DIM Sdl:1888:
MAT S=(8.>
Te=2.#PI#0#TwsN
s=PI*Tw M
FOR Hz=1 TO

M,k Mz, Kz

M-1

Rho=COScTosHMs »$SIH O TesMs w0 TasMzD ! FLAT BAMIPASE

Fho2=Rho*Rho
Pk=1.-Hz-1

FOR kEz=2 T3 K
Pk=Fk #Eh02

S SO Kz 1 +Pk

Pk DI1.E-12

FRIMNT "TH =";Tug"

INFUT "HU

0 W

U=1.

SumESun+llsT0E s

HEXT ks

Sum=Duw-1, +;

F=2,%SRRCTws

#34m

GOTD 228
EHD

STEP

GS=FHGammar . S%V+.

Du=SRRCPI P FHGammaly+,

BT B
PRINT W, 18, sLGToF ), 2, #3073

TH

fosH »= .5
M, tumbsr

Mumber of

FULL-WAYE RECTIFIER

| BO¥ CAR FILTER

3

THEH 288

5

2ol s oo v
S 0GRS #5350

SFECTRLUM
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Table H-2. Half-Wave Rectifier, Flat Bandpass Spectrum, Box Car Filter

()

Tw=548,
B=5, 75,
M=1884
E=108a
DOUELE M,
REDIM S0l
DIM Sd1:1
MAT S=Cg, >

Tec=2.*PI#2*Tw M

==FI*Tw- M

FORE Hz==1 T0O M-1 .

Fho=C0SCToeMz 2 S IH TesHa 0 (T xHz ! FLAT BAMDOFAZZ SFECTREUM
Pk=1.-Hz-M ! BOX CHE FILTER
FOR kK==1 TO K
Pk=Pk*Rhwo
Sikzy=5(Ks:
IF ABSCPE 34
HEST K
HE®T M
FRINMT ;
IMPUT "HuU =",% ! HL
GS=FHGammal ., S*V+,5)

legr=1,

U=FHGammay.S*W+1, »" 535

Uola=2, sUxU

T HALF-WAVE RECTIFIER
fosW »= .5

M, number of =samples

Mumber of terms in Sum

[ R R U A

oy
D)

LY kTt 0 SRS B N I CR
[xx)

D R U )

—
Do)

[ I X ]

MY
AR

1.E-1& THEHM 138

U

=
A

IR W E B I S ¢ S S P T OO = A
[ux]

-
[

)
U U

Sum=0C1 25010
FOR kEz=2 TO K
T=%+2.-KE=

(Y
Sm
HEXT kK=

D= CRT #FHGammacy+, S (535650
S #Ow-1,+2, *Sumn )
F=2.#S0RCTusSumo ooy

FRIMT W, 18, «LGTOF ), 2. #U# 30K < Sum
GOTD 21@

EHD

PRSI

DA

=
[ax]

va

112

w3

TH ="3Tws" @ ="g@p" M Oo=tiMpt K =Upkgt SOKY =t SR
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Table H-3. Full-Wave Rectifier, -6 dB/Octave Spectrum, Box Car Filter

TH FULL-WAYE RECTIFIER

—
A}
b |
=

]
(]
LI}

=
1]
—
[ U] L
o

=ye] o= o8 fooW
3 M, number of sample

-

Humber of terms in Sum

oo
=
=
-
hx
I
b

DOUEBLE M, K, H=, ks
REDIM Solsk

DIM S01:1888>

MAT S=.(@,2
Cl=2,%PI%Twusx{Q~-.52-M
C2=2.#PI*Tws{Q+.52 -1
Sgq=12.,
Sq=SRRCCSq=3. )0 Sytl, 00

FOR Hz=1 T M-1

EhosFHRERoOHs , 01,02 ! -& JdE<QCTAME SFECTRLUM
Fho2=Rho*Rhao

Pk=1.-H=z-M ! Bl AR FILTER

FOR k=z=2 TO K STEF 2 .

Fk=FPk*FEhoZ

D i

PR U LU W

[xx )

®OEQ

DDA

DO

DA
[hoUR WU b

(5] SiKs2=5 ' +F L

IF AEBSCPk <
HEST kK=
HEST H=
FEIMNT "TW =";Tw;" Go="ang Mo="spy Eoo="gky"  SORE} ="iSdkn
IMPUT "HU =",% ! HId
GI=FNGammas . S+, 52

=1,

Sum=4a,

FOR kKz=2 TO kK STEF 2

T=W+2, 3
Il=10xT*T.~
SumESum+ S K s

MEST K=

Du=SRRcPI#FHGCanmaiY+,. S0 - 055550
Sum=Du-1,+2.%3um

F=2, #S0RCTwESum M o &3y

FRINT ?,15.;LGTCF?,E.fU*S£HEESum

COTD 249

EHD

i

DEF FHERoCDOUELE M= ,REARL C1,020

Rl=C1#Hz

RE=CZ2%MH=

Flo=FHS i CAL  -FHST CRZ+COSCRT v AL -CO0S e RS Y "AS
Rho=R1*AZ*Fho- TRZ-R1 D

FETUEHN Fha

FHEHD

=
b

THEW 228

SO oURN O R T Y R PR O Il o Y WO R I S I
=

.._
[N

Sl = R e o e

Do IO I O X X

EOE O AR R TR IR SN LR L
[xx]

Oy 0 da L Do

-
v
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Table H-4.

T

TH
il

-

n £

= = n
T

Humbos
My K, Hs Hz

FEDIHM “fl-F“
DIp Sul.luu
MAT S=0a,
-l=zZ. *PI*TH?'“—
L;-a.*PIrTH*'N+

R Y I L) Y P B O

Lo o I R o U AU W B X B o )

R
[xx)

AR

M-1

1 T
Eff'll:ﬂ:FHF.hi_l cHs, 01,
Flk=1.
FHP

DA
T U
P ]
0
-
._

~Hz.H
Ks=1 TO K

DOl (]

—
fux)

Kz
IF HB;
HEST K
HEST M
FRIMT
INFUT
GES=FHGamma .
Uiga=1,

U=FMNGammar .
Udlr=2,«Uxl
Sum=00 a®S0L 0
FOF K==2 TO kK

CYCRE ORI B0 ) I CRR O LNl )

=
[OUR R

.E-12 THEH 2184

U WA

l_|‘| [T

P o= 3
[Tl )

TH " Tws" o=t M
1] r.{ lJ = n 0 l‘.‘l
SN+, D0

CROR (ST OO I (O S i e el

o8

X
WX

SENMEL L DSGT

Do )

i oUREN E RO e B D £
[xx)

= |+ - } =

—
(X

_iK; B SR Tl A B

5}

D I X ]

ORECFI 2 #FHGamman Y+, S0 0
Sum=2 . % 0u-1,+2, #3um
F=2.#*S0RCTwsSum M.
PRIMT W, 18.%LGTCFy, 2,
SOT ::D

EMD

SS*GS)

LUNR| [ 8
Dax)

iy
[x]

[ IS e I
W E S

(R |

—
)

iy
hx)

FUESOE D S 0m

ORI I T 0 T 0 U SO B R o S  O% Y OSCR I CRR (N

(¥n)
]

114

My rumbozr
of

ter

! -&

b BOE

(R

of =
f

Half-Wave Rectifier, -6 dB/Octave Spectrum, Box Car Filter

HALF-WAYE RECTIFIER

mplea
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Table H-5. Half-Wave Rectifier, Flat Bandpass Spectrum,
Long Averaging Time Assumption

o

—

s
]

! TH HALF-WARYE RECTIFIER
bofesld 2= .5 LOME AYERAGIMG TIME
oMy number of zampies HSSUMPTIOHN
! fs=

Humber of ter in Sum

[xn] |"'|

oV I R U
= = o
= =
] I
—_
[ A |_I] in
DO

REDI 1:E
ODIM 5-1 IE
IOUELE HCS:
D=3+
QI=02+0
Ad=L32+0
S1=FHGL @R
128 SE=FHG2 A2 2 +FHG2YE,. 2

SO=FHGICRI»+3, *FHGZ (R
S4=FHGH NS +4, FHGHCRZ I F3, *FHGE 0@, O
Qwd=M-Ts
Fow=8,
Fow=Fow+dwd
IF Fow-R4:x=2, THEH 258
S1=S1+4FHGL CFow-R2+FHGL R+
= CEHFHGZ  Fow=R2 0 +2, *FHEECFow +FHG2 CF i+ 2
SZ+FHGICF o= e+ *FHG R R o= 0+ #FHG I F o+ +FHG I F o+ 0Dy
S4+FHG4CFow—Ed s +3, *FHG4CFou—Q02 0 +5, *FHEG CFmwd
S4+d, *FHGG CFow+ D20 +FHGS CFow+Rd
0 17va

= Joan
1y D )

th‘l:lﬁﬁﬁﬁ) kol logas:s

=
[x

.
L U R e IR S B OO TN B (R
L I R xR e | QD

P
!

)

T
DU

= =
DAY

4
5
(=15
v
5
E
&
1

M
D)

S4=
S4=
GOT
1

DO O ]

=, 3%#0wd*51-.9
3=, 25 0ud#52-.5
5 L=, 1259 0udEs3 5
g SCd =, 0825 0udesd -,
5] Tc=2.*PI*Q *TwM
£35]5) Te=FPI*Tw.
1 Errur—l.E IG

Cl=1.-T=

“9=—LDEi s*Erraor s

z2=% TO K

T: -1 -
A=THTCCI#ERPCCCZ~-LOS T Too+]
HE TP

FOFR
IF H&

-, -,
Do U A T R o 0t I X

-1 To S STER -1 .
THOEz+10 THEM Hikzi=Huokz+12

[xn IENs ]
[ R X I AN

-

-

m

—

-

I

Hmw oz --H M ® D

FEDIM RtiodlsHMma=? Bkl Hmax

FOR HMz=1 TO Hrn-:t.»-.

FeRborHs =0 0S0To*#Ha b #SIHO T w0 TasHe
REiHz  =R+=R=R*F
HE=T M=

FOR Kz=5% TO K

S=a.

FOR Hz= TO Hikzo
Fhk=RkiHz ' 2Fk{Hz ' =RbFo 'z

=
U]

Pt
2R

N B O Paoe o
o S T = oS
T S

1o QO
1

,_
M
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DDA R RO

N oo L ocn O oon
Ty LN 0D P o

o 03 b X

DDA

S

S0
sl
s1e
£28
(Eq]
=
2315
FEB
£7 48
£330

IR OV Y (L
DDA O

Lo )

4 =~ =g T

[ PR B R

e e e I

234
ENs 1Y)
218
228
El

A
[, QS N TV L)
hoU

Y
KRR

5

ER=N)
A

—
e
MRS

116

Table H-5

w)

Rk

Z"_

=5+
JEXT
Sikz =

HE 1T K=

=

FRIMT "7 =";Tuw;" Go="g 0
i,
GS=FHGan

IHFUT

Urar=1.
U=FHGamn
Yela=2.=
Sum=U01
FOR kK==
T=W+2. -t
ez =l
Sm=SuUm
HE AT h-
D=t
Sum
F=2.
FRIMNT W
GOTO S
EMD
!
DEF FHLC
A=HES.F
1F H<.
IF A=,
JRETUEN
FHEHMD
1
LEF FH
R=REBZ
IF A<l
FRETUIRH
FHEMD
|

*#50

LNEF FH 2

A=AES
IF A<,

IF A<1 %

RETLEY
FHEMD

=

1F A<

RETUR 9.

FHEHD

sont'd).
Long Averag1

=n . i\
al . S+, S0

Kz ECK

v EFHGanmaty+ . S0

=1+ 2. 5um
TwsSum- Mo
lB.*LETﬁF},E.*U*Sf

CF

THEM RETURH 1.
THEH RETURH .5

R

THEHM RETUREH t.-H

1.

CF

THEH
THEH

FETURH
FRETURH

L1205

!
.

$0F

THEHN
THEH
1

FETURMH (d4.-%.
FETURM »2.-H?Y

(K E

ng Time Assumption

[

-1

o552

Sum

.TS-H*H

£3.-R-F#03.-A-AD

Half-Wave Rectifier, Flat Bandpass Spectrum,
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Table H-6. Auxiliary Functions Si(x) and J7(x)

DEF FHEi (x5 I Si0H) wia S.2.8,14,38,39

D )
T=M*

AR
=

B IF ¥»1. THEH T8
i Si=2. 334457 1 2018E-5-%3. 8519243532 2E-T
#0 . BSSSSSS5S5556 %01, SEEEEEEEEETE~S-Y#5{ 1 10

oo
o
"
2y
+
.
[
|
}:
n
-

FETURM 31

Ti=23,

R UL JOL B R P

ol
=
DU

¥
o

,_

oo
=
D)

[

CHI=F#C0SCH -GS I

T
XN kX

— b b s s s
o L
ot

on
D)

FHEMD

!

LEF FHGammad ! HART, page 135, #5243
DOUERLE H, K
H=THT s

"=k ~H

IF H:g OF R>g

B
DX

=
[}

=
[x

THEH &6

FEIHT "FHGammacxs» IS HOT DEFIHED FOR 4 = 1 g8
STOF

‘IF A, THEH i@
GammazZ=1,

SOTO 1

DOCRR s PR B OO N
DO A O D

Doy
o

=15

14 SETE
e G5
A H23a
44 RIS
g5 CTEYA

,_
)
oo
=
D
ey
XX

=
U]

! Gammar2+Fy far @ 2 R ¢

o=
[

IF H»2 THEH 228
IF H<Z THEH 278
Ganmaz=Gammas
FETUREHN Gamma
Samma=3Sammas
FOR k=1 TO H-2
Gamma=Gamma® s =k
HE=T K

FETURHN Ganmma

P
0

OUNEN W Y i S 0 4
-
M

'
=

| GO O 8 S SO G PO S Y
—
10

py
MUBE MU U

LRUCH ) I 8
[x]

il
AN

FOR K= TO 1-H

Camma=Gammas. -
FETURH Samma 117/118
FHEND Reverse Blank
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